Yahoo Web Search

Search results

  1. Quasar is a framework that lets you build web, mobile and desktop applications with a single codebase using VueJs. It offers top class components, integrations, documentation and a supportive community.

  2. en.wikipedia.org › wiki › QuasarQuasar - Wikipedia

    The term quasar originated as a contraction of "quasi-stellar [star-like] radio source"—because they were first identified during the 1950s as sources of radio-wave emission of unknown physical origin—and when identified in photographic images at visible wavelengths, they resembled faint, star-like points of light.

    • Overview
    • Discovery of quasars
    • GeneratedCaptionsTabForHeroSec

    quasar, an astronomical object of very high luminosity found in the centres of some galaxies and powered by gas spiraling at high velocity into an extremely large black hole. The brightest quasars can outshine all of the stars in the galaxies in which they reside, which makes them visible even at distances of billions of light-years. Quasars are am...

    The term quasar derives from how these objects were originally discovered in the earliest radio surveys of the sky in the 1950s. Away from the plane of the Milky Way Galaxy, most radio sources were identified with otherwise normal-looking galaxies. Some radio sources, however, coincided with objects that appeared to be unusually blue stars, although photographs of some of these objects showed them to be embedded in faint, fuzzy halos. Because of their almost starlike appearance, they were dubbed “quasi-stellar radio sources,” which by 1964 had been shortened to “quasar.”

    The optical spectra of the quasars presented a new mystery. Photographs taken of their spectra showed locations for emission lines at wavelengths that were at odds with all celestial sources then familiar to astronomers. The puzzle was solved by the Dutch American astronomer Maarten Schmidt, who in 1963 recognized that the pattern of emission lines in 3C 273, the brightest known quasar, could be understood as coming from hydrogen atoms that had a redshift (i.e., had their emission lines shifted toward longer, redder wavelengths by the expansion of the universe) of 0.158. In other words, the wavelength of each line was 1.158 times longer than the wavelength measured in the laboratory, where the source is at rest with respect to the observer. At a redshift of this magnitude, 3C 273 was placed by Hubble’s law at a distance of slightly more than two billion light-years. This was a large, though not unprecedented, distance (bright clusters of galaxies had been identified at similar distances), but 3C 273 is about 100 times more luminous than the brightest individual galaxies in those clusters, and nothing so bright had been seen so far away.

    An even bigger surprise was that continuing observations of quasars revealed that their brightness can vary significantly on timescales as short as a few days, meaning that the total size of the quasar cannot be more than a few light-days across. Since the quasar is so compact and so luminous, the radiation pressure inside the quasar must be huge; indeed, the only way a quasar can keep from blowing itself up with its own radiation is if it is very massive, at least a million solar masses if it is not to exceed the Eddington limit—the minimum mass at which the outward radiation pressure is balanced by the inward pull of gravity (named after English astronomer Arthur Eddington). Astronomers were faced with a conundrum: how could an object about the size of the solar system have a mass of about a million stars and outshine by 100 times a galaxy of a hundred billion stars?

    Britannica Quiz

    Brightest Star in the Solar System

    The right answer—accretion by gravity onto supermassive black holes—was proposed shortly after Schmidt’s discovery independently by Russian astronomers Yakov Zel’dovich and Igor Novikov and Austrian American astronomer Edwin Salpeter. The combination of high luminosities and small sizes was sufficiently unpalatable to some astronomers that alternative explanations were posited that did not require the quasars to be at the large distances implied by their redshifts. These alternative interpretations have been discredited, although a few adherents remain. For most astronomers, the redshift controversy was settled definitively in the early 1980s when American astronomer Todd Boroson and Canadian American astronomer John Beverly Oke showed that the fuzzy halos surrounding some quasars are actually starlight from the galaxy hosting the quasar and that these galaxies are at high redshifts.

    Quasars are extremely bright and distant objects powered by supermassive black holes in the centres of some galaxies. Learn how quasars were first observed, how they produce their radiation, and how they vary over time.

    • Bradley Peterson
  3. Oct 19, 2023 · Quasars are the brightest objects in the universe, powered by supermassive black holes feeding on gas. Learn how quasars are formed, how they shine, how big they are and how far away they are from Earth.

    • Quasar1
    • Quasar2
    • Quasar3
    • Quasar4
    • Quasar5
  4. Aug 19, 2020 · Quasars are brilliant galactic cores powered by supermassive black holes that may limit the growth of massive galaxies. Learn how Webb's unique imaging spectroscopy will reveal the impact of quasars on their host galaxies and the universe.

  5. earthsky.org › astronomy-essentials › definition-what-is-a-quasarWhat is a quasar? - EarthSky

    Feb 28, 2021 · What is a quasar? The word quasar stands for quasi-stellar radio source. Quasars got that name because they looked starlike when astronomers first began to notice them in the late 1950s...

  6. www.nasa.gov › universe › galaxiesQuasars - NASA

    Quasars - NASA. NASA Science on Health, Safety to Launch on 31st SpaceX Resupply Mission. Risk of Reduced Cardiorespiratory and Musculoskeletal Fitness. Risk of Injury and Compromised Performance from Extravehicular Activity (EVA)

  1. Searches related to Quasar

    Quasar medical